Evaluate the capacity values for the channels whose transition probabilities ave given by each of the following matrices Q.
(a) $Q=\left[\begin{array}{ll}1 / 3 & 2 / 3 \\ 2 / 3 & 1 / 3\end{array}\right]$
(c) $Q=\left[\begin{array}{lll}2 / 3 & 1 / 6 & 1 / 6 \\ 2 / 3 & 1 / 6 & 1 / 6\end{array}\right]$
(b) $Q=\left[\begin{array}{lll}1 / 6 & 1 / 3 & 1 / 2 \\ 1 / 2 & 1 / 6 & 1 / 3 \\ 1 / 3 & 1 / 2 & 1 / 6\end{array}\right]$
(d) $Q=\left[\begin{array}{cccccc}0 & 1 / 2 & 1 / 2 & 0 & 0 & 0 \\ \frac{1}{3} & 0 & 0 & \frac{1}{3} & \frac{1}{3} & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$
(a) The channel is symmetric. So,

$$
\begin{aligned}
C & =\log _{2}\left|s_{Y}\right|-H(\underline{r})=\log _{2} 2-H\left(\left[\begin{array}{ll}
\frac{1}{3} & \frac{2}{3}
\end{array}\right]\right) \\
& \approx 1-0.9183 \approx 0.0817 .
\end{aligned}
$$

(b) The channel is symmetric. So

$$
\begin{aligned}
C & =\log _{2}\left|s_{y}\right|-H(r)=\log _{2} 3-H\left(\left[\begin{array}{lll}
\frac{1}{6} & \frac{1}{3} & \frac{1}{2}
\end{array}\right]\right) \\
& \approx 0.1258 .
\end{aligned}
$$

(c) Note that the rows of Q are all the same.

So, $H(Y \mid x)=H\left(\left[\begin{array}{lll}2 / 3 & 1 / 6 & 1 / 6\end{array}\right]\right)$ for any x.
Therefore, $H(Y \mid X)=\sum_{x} p(x) H(Y \mid x)=H\left(\left[\begin{array}{lll}\frac{2}{3} & \frac{1}{6} & \frac{1}{6}\end{array}\right]\right) \approx 1.2516$
Next, note that for any $p(x)$, we have

$$
q(y)=\sum_{x} p(a) \underbrace{Q(y \mid x)}_{\uparrow}=\underbrace{Q(y \mid a)} .
$$

For a given y, this is the same for all oe.
So, $H(Y)=H(Y \mid K)$ as well.
$I(X ; Y)=H(Y)-H(Y \mid X)=0$ for any R.
Remark. We can also conclude from $q(y)=Q(y \mid x)$ that $x \Perp Y$. This also implies $I(X ; y)=0$.

$$
C=\max _{R} I(x ; y)=0 .
$$

(d) Note that this is a noisy channel with non overlapping outputs. so, $c=\log _{2}\left|s_{x}\right|=\log _{2} 3 \approx 1.5850$.

